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• Resummation: Organization of soft and collinear

radiation to all orders in PT

• Why resum?

– Tests of perturbative stability for inclusive cross sections.

– The only way to calculate certain critical distributions for

W, Z transverse momentum & jet event shapes.

– As such, tests of QCD to all orders: LO, NLO . . .

– A window to the perturbative/nonperturbative transition.

– An analytic complement to, stimulus for & test of

parton shower techniques and tools.

– Nice formulas (a matter of taste).

• Depends on very some general concepts too.



IIIA. Reprise: how we get away with perturbative QCD

The sorrows of QCD perturbation theory:

1. Confinement

∫

e−iq·x〈0|T [φa(x) . . . ] |0〉

has no q2 = m2 pole for any field (particle) φa that

transforms nontrivially under color (confinement)

2. The pole at p2 = m2
π

∫

e−iq·x〈0|T [π(x) . . . ] |0〉

is not accessible to perturbation theory (χSB etc., etc.)



• And yet we use infrared safety & asymptotic freedom:

Q2 σ̂SD(Q2, µ2, αs(µ)) =
∑

n

cn(Q2/µ2) αs
n(µ) + O (1/Qp)

=
∑

n

cn(1) αs
n(Q) + O (1/Qp)

• What are we really calculating? PT for color singlet operators

–
∫

e−iq·x〈0|T [J(x)J(0) . . . ] |0〉 for color singlet currents

e+e− total, sum rules etc. “no scale”



– Another class of color singlet matrix elements:

lim
R→∞

∫

dx0

∫

dn̂ f(n̂) e−iq·y〈0|J(0)T [n̂iΘ0i(x0, Rn̂)J(y)] |0〉

With Θ0i the energy momentum tensor

– These are what we really calculate: jet cross sections, etc.

If the “weight” f(n̂) introduces no new dimensional scale,

and all dkf/dn̂k bounded, then

individual final states have IR divergences, but these cancel

in sum over collinear splitting/merging & soft parton

emission because they respect energy flow.



We regularize these divergences dimensionally (typically)

and “pretend” to calculate the long-distance enhancements

only to cancel them in infrared safe quantities

It is this intermediate step that makes the calcualtions

tough, and is part [not all] of why higher-order calculations

are hard!

The goals of experiment are remarkably similar – to control

late stage interactions in calorimeters.

Resummation organizes large, or potentially large, terms

from high orders in αs at the short-distance scale.



• Onward to factorization

Q2σphys(Q,m) = ωSD(Q/µ,αs(µ)) ⊗ fLD(µ,m) + O (1/Qp)

– µ = factorization scale; m= IR scale (m may be perturbative)

– New physics in ωSD; fLD “universal”

– ep DIS inclusive, pp → jets, QQ̄, π(pT ) . . .

– Exclusive decays: B → ππ

– Exclusive limits: e+e− → JJ as mJ → 0



• Whenever there is factorization, there is evolution

0 = µ
d

dµ
lnσphys(Q,m)

µ
d ln f

dµ
= −P (αs(µ)) = −µ

d ln ω

dµ

PDF f or Fragmentation D

• Wherever there is evolution there is resummation

lnσphys(Q,m) = exp

{

∫ Q

q

dµ′

µ′
P (αs(µ

′))

}



• Infrared safety & factorization proofs:

– (1) ωSD incoherent with long-distance dynamics

– (2) Mutual incoherence when vrel = c:

Jet-jet factorization Ward identities.

– (3) Wide-angle soft radiation sees only total color flow:

jet-soft factorization Ward identities.

– (4) Dimensionless coupling and renormalizability

⇔ no worse that logarithmic divergence in the IR:

fractional power suppression ⇒ finiteness



IIIB. Vector bosons: QT , its factorization

Every final state from a hard scattering carries the imprint

of QCD dynamics from all distance scales.

– Look at transverse momentum distribution at order αs.

q(p1) + q̄(p2) → γ∗(Q) + g(k)

– Treat this 2 → 2 process at lowest order (αs) “LO”

in factorized cross section, so that k = −QT .



– Factorized cross section at fixed QT :

dσNN→µ+µ−+X(Q, p1, p2)

dQ2d2QT
=

∫

ξ1,ξ2

∑

a=qq̄

dσ̂aā→µ+µ−(Q)+X(Q, µ, ξ1p1, ξ2p2,QT )

dQ2d2QT

× fa/N(ξ1, µ) fā/N(ξ2, µ)

– Recall: µ is the factorization scale that separates

IR (f) from UV (dσ̂) in quantum corrections.

– µ appears in σ̂ through αs(µ) and ln(µ/Q),

so choosing µ ∼ Q can improve perturbative predictions.

– Evolution: µdf(x, µ)/dµ =
∫ 1

x
P (x/ξ) f(ξ, µ)

makes energy extrapolations possible.



– The diagrams at order αs.

Gluon emission contributes at QT 6= 0.

Virtual corrections contribute only at QT = 0

– The result is finite for QT 6= 0 . . .



dσ̂
(1)
qq̄→γ∗g

dQ2 d2QT
= σ0

αsCF

π2

(

1 − 4Q2
T

(1 − z)2ξ1ξ2S

)−1/2

×
[

1

Q2
T

1 + z2

1 − z
− 2z

(1 − z)Q2

]

as long as QT 6= 0, z = Q2/ξ1ξ2S 6= 1.

QT integral → ln(1−z)
1−z ; z integral → ln Q2

T

Q2
T

.

Both singularities cancel in the inclusive cross section.

Both inspire resummation of higher order corrections.



The leading singularity in QT

– As we’ll see later: 1 − z ∼ 2k0/Q ≥ 2|kT |/Q

– z integral: If Q2/S not too big, PDFs nearly constant:

1

Q2
T

∫ 1−Q2
T/Q2

1−Q2/S

dz

1 − z
=

1

Q2
T

ln

[

Q2

Q2
T

]

⇒ Prediction for QT dependence:

dσNN→µ+µ−+X(Q,QT )

dQ2d2QT
=

αsCF

π

1

Q2
T

ln

[

Q2

Q2
T

]

×
∑

a=qq̄

∫

ξ1ξ2

σ̂aā→µ+µ−(Q)+X(Q,µ)

dQ2
fa/N(ξ1, µ) fā/N(ξ2, µ)



– Compare to: Z pT from Run I

66 < Q < 116 GeV

CDF

Exclusive Limit
Resum

Resum+power

(from Kulesza, G.S., Vogelsang (2002))

– ln QT/QT works pretty well for large QT

– At smaller QT reach a maximum, then a decrease

near “exclusive” limit (parton model kinematics)

– Most events are at “low” QT ≪ Q = mZ.



Getting to QT ≪ Q: Transverse momentum resummation

(Logs of QT )/QT to all orders

How? Variant factorization and separation of variables

q and q̄ “arrive” at point of annihilation with transverse

momentum of radiated gluons in initial state.

q and q̄ radiate independently (fields don’t overlap!).

Final-state QCD radiation too late to affect cross section

dσNN→µ+µ−+X(Q,QT )

dQ2d2QT



Summarized by: QT -factorization:

dσNN→QX

dQd2QT
=

∫

dξ1dξ2 d2k1Td2k2Td2ksT δ (QT − k1T − k2T − ksT )

× H(ξ1p1, ξ2p2, Q,n)aā→Q+X

×Pa/N(ξ1, p1 · n, k1T )Pā/N(ξ2, p2 · n, k2T ) Uaā(ksT , n)

The P ′s: new Transverse momentum-dependent PDFs

Also need U : “soft function” for wide-angle radiation.

– Caution: Extensions to less inclusive cross sections are

highly nontrivial. (viz: Collins and Qiu (2007))



Symbolically:

dσNN→QX

dQd2QT
H ×Pa/N(ξ1, p1 · n, k1T )Pā/N(ξ2, p2 · n, k2T )

⊗ξi,kiT
Uaā(ksT , n)

We will solve for the kT dependence of the P’s.

New factorization variables: nµ apportions gluons k:

pi · k < n · k ⇒ k ∈ Pi

pa · k, pā · k > n · k ⇒ k ∈ U

Convolution in ki,T s ⇒ Fourier ei ~QT ·~b



The factorized cross section in “impact parameter space”:

dσNN→QX(Q, b)

dQ
=

∫

dξ1dξ2

× H(ξ1p1, ξ2p2, Q,n)aā→Q+X

×Pa/N(ξ1, p1 · n, b)Pā/N(ξ2, p2 · n, b) Uaā(b, n)

Now we can resum by separating variables!

the LHS independent of µren, n ⇒ two equations

µren
dσ

dµren
= 0 nα dσ

dnα
= 0



Method of Collins and Soper, and Sen (1981)

Change in P must cancel change in (UV) H and (IR) U :

p · n ∂

∂p · n ln P(p · n/µ, bµ) = G(p · n/µ) + K(bµ)

G matches H, K matches U . Renormalization indep. of nµ:

µ
∂

∂µ
[ G(p · n/µ) + K(bµ) ] = 0

µ
∂

∂µ
G(p · n/µ) = A(αs(µ)) = − µ

∂

∂µ
K(bµ)

Solve this one first.



G(p · n/µ) + K(bµ) = G(p · n/µ) + K(µ/p · n)

−
∫ p·n

1/b

dµ′

µ′
Aa(αs(µ

′))

Notice the scale in the coupling is now a variable.

The consistency equation for the jet becomes

p · n ∂

∂p · n ln P(p · n/µ, bµ) = G(p · n/µ) + K(µ/p · n)

−
∫ p·n

1/b

dµ′

µ′
A(αs(µ

′))

Integrate p · n and get double logs in b → αn
s

ln2n−1(Q/QT )
QT

.



Transformed solution back to QT : all the (Logs of QT )/QT :

dσNNres

dQ2 d2 ~QT

=
∑

a

Haā(αs(Q
2))

∫

d2b

(2π)2
ei ~QT ·~b exp

[

EPT
aā (b, Q, µ)

]

×
∑

a=qq̄

∫

ξ1ξ2

dσ̂aā→µ+µ−(Q)+X(Q, µ)

dQ2
fa/N(ξ1, 1/b) fā/N(ξ2, 1/b)

“Sudakov” exponent suppresses large b ↔ small QT :

EPT
aā = −

∫ Q2

1/b2

dk2
T

k2
T

[

2Aq(αs(kT )) ln

(

Q2

k2
T

)

+ 2Bq(αs(kT ))

]

With B = 2(K + G)µ=p·n, and lower limit: 1/b (NLL)



∗ Leading log: fixed αs(Q), A = (αs/π) × A(1) only

dσNNres

dQ2 d2 ~QT

=
∑

a

Haā(αs(Q
2))

∫

d2b

(2π)2
ei ~QT ·~b exp

[

− A(1)(αs(Q)/π) ln2(bQ)
]

×
∑

a=qq̄

∫

ξ1ξ2

dσ̂aā→µ+µ−(Q)+X(Q,µ)

dQ2
fa/N(ξ1, 1/b) fā/N(ξ2, 1/b)

∗ If ignore evolution of the f ’s, get an overall factor

dσNN→µ+µ−+X(Q,QT )

dQ2d2QT
=

∂

∂Q2
T

e
−

h

A(1)(αs(Q)/π) ln2(Q2/Q2
T )

i

×
∑

a=qq̄

∫

ξ1ξ2

σ̂aā→µ+µ−(Q)+X(Q,µ)

dQ2
fa/N(ξ1, µ) fā/N(ξ2, µ)



∗ Comments:

The functions Ai(αs) and Bi(αs) are anomalous

dimensions.

They can be calculated by comparison to low orders.

In particular, Ai(αs) is the numerator of

the 1/(1 − x) term in splitting function Pii(x)

because it’s the infrared divergent (x → 1) coefficient of

the collinear (b → ∞) singularity.

∗ Aq(αs) = αs
π Cq

(

1 + αs
π K + . . .

)

, K = CA

(

67
18 − π2

6

)

− 5nF
9



∗ Logs from LO, NLO in Aq = A
(1)
q (αs/π) + . . . , LO in Bq

Eqq̄ = − 2

∫ Q2

1/b2

dk2
T

k2
T

[

Aq(αs(kT )) ln

(

Q2

k2
T

)

+ B(αs(kT ))

]

∼ 2Ci

∫ Q2

1/b2

dk2
T

k2
T

[{

αs(kT )

π
+ K

αs(kT )

π

}

ln

(

Q2

k2
T

)

+ 2
αs(kT )

π

]

∼ 2Ci
αs(Q)

π

∫ Q2

1/b2

dk2
T

k2
T

[

{

1 +

(

αs(Q)

π

)

(K − β0)

}

ln

(

Q2

k2
T

)

+2
αs(Q)

π

]



∗ The pattern:

2Ci
αs(Q)

π

∫ Q2

1/b2

dk2
T

k2
T

[

{

1 +

(

αs(Q)

π

) (

K − β0

4π

)}

ln

(

Q2

k2
T

)

+2
αs(Q)

π

]

∼ αs ln2(bQ)(1 + αs ln(bQ) + . . . )

+αs ln(bQ)(1 + αs ln(bQ) + . . . )

+ . . .

∗ These are LL(A(1)), NLL (B(1), A(2)), and so on

∗ NLL is good so long as αs(Q) ln bQ ≤ 1.



∗ Evaluating a resummed cross sections: re-enter NPQCD.

We start with:

EPT = −
∫ Q2

1/b2

dk2
T

k2
T

[

2Aq(αs(kT )) ln

(

Q2

k2
T

)

+ Bq(αs(kT ))

]

With running coupling:

αs(kT ) =
αs(Q)

1 + αs(Q)
4π β0 ln

(

k2
T

Q2

) =
4π

β0 ln

(

k2
T

Λ2
QCD

)

Singularity in integral at b2 = Q2 exp[−4π/β0αs(Q)] ∼ 1
Λ2.



∗ Problem: how to do the inverse transform with the

running coupling when kmin
T ∼ 1/b gets small?

∗ At least four approaches:

1) Work in QT -space directly to some approximation

(The originals: Dokshitzer, Diakanov & Troyan (∼ 1979).

Revived by Ellis & Veseli Kulesza & Stirling

who re-derived this from b-space. (∼ 2000))

2) Insert a “soft landing” on the kT integral by replacing

1/b →
√

1/b2 + 1/b2
∗

for some fixed b∗. (Collins, Soper “b∗” prescription (1982), ResBos)



3) Extrapolation of EPT into NP region (Qiu, Zhang (2002)).

4) Minimal: avoid the singularity at 1/b = ΛQCD

by monkeying with the b-space contour integral.

(This technique introduced in threshold resummation;

then adapted by Laenen, GS and Vogelsang,

and Bozzi, Catani, de Florian and Grazzini. (2000-2003))

Any of these “define” PT. All will fit the data

qualitatively, and with a little work quantitatively.

But all require new parameters for quantitative fit.

This is not all bad . . . let’s see why.



A bit more consideration generalizes (for the A-term)

for small kT to some upper limit µI:

Esoft =
1

2π

∫ µ2
I

0

d2kT

k2
T

Aq(αs(kT )) ln

(

Q2

k2
T

)

(

eib·kT − 1
)

∼ −
∫ µ2

I

0

dk2
T

k2
T

(b · kT )2Aq(αs(kT )) ln

(

Q2

k2
T

)

+ · · ·

∼ − b2

∫

dk2
T Aq(αs(kT )) ln

(

Q2

k2
T

)

θ(kT − 1/b) ⇒ (eib·kT − 1); in fact, correct to all orders,

Note the expansion is for b “ small enough” only.



What is − b2
∫

dk2
T Aq(αs(kT )) ln

(

Q2

k2
T

)

?

Don’t really know, but it suggests

a nonperturbative correction of the form

(exhibiting the µI is unconventional)

ENP = − b2µ2
I

(

g1 ln

(

Q

µI

)

+ g2

)

Since this is an exponent, whatever the definition

of the pertrubative resummed cross section, it is

smeared with a Gaussian whose width in b (kT ) space

decreases (increases) with lnQ.



In summary

dσ(QT )

dQ2 d2 ~QT

=
∑

a

Haā(αs(Q
2))

∫

d2b

(2π)2
ei ~QT ·~b eEPT

aā (b,Q,µ) e
− µ2

Ib2(g1 ln
“

Q
µI

”

+g2)

×
∑

a=qq̄

∫

ξ1ξ2

dσ̂aā→µ+µ−(Q)+X(Q, µ)

dQ2
fa/N(ξ1, 1/b) fā/N(ξ2, 1/b)

= π

∫

d2kT
e−k2

T /4[µ2
I(g2 ln(Q/kT )+g2)]

µ2
I(g2 ln(Q/kT ) + g2)

dσNN(QT − kT)

dQ2 d2 ~QT



Which gives curves like the one we saw before.

66 < Q < 116 GeV

CDF

Exclusive Limit
Resum

Resum+power



Successful phenomenology for W and Z.

In principle, can also fit to fixed-target Drell-Yan with

the same set of NP parameters.

Qiu and Zhang show that NP corrections are

dominant for fixed-target Q2.

What about those 1/(1 − z) (soft gluon energy)

singularities?

∗ This is threshold resummation . . .



IIIC. Threshold Resummation

Integrate over QT : the NLO total DY cross section

Integrate over QT at fixed z = Q2

ξ1ξ2S. QT → 0 is singular.

Add diagrams with virtual gluons: their kT integrals

are singular.

Factorize low kT = −QT < µ gluons just as in DIS.

The remainder is now finite at fixed QT , z 6= 1.



The left-over NLO σ̂ is not a normal function of z!

Because dσ/dQ2 begins at αs
0, this is next-to-leading

order (NLO) here.



σ̂q̄q for Drell-Yan at NLO

d2σ̂
(1)
qq̄→γ∗g(z,Q2, µ2)

dQ2

= σ0(Q
2)

(

αs(µ)

π

)

{

2(1 + z2)

[

ln(1 − z)

1 − z

]

+

− (1 + z2) ln z

(1 − z)
+

(

π2

3
− 4

)

δ(1 − z)

}

+ σ0(Q
2) CF

αs

π

[

1 + z2

1 − z

]

+

ln

(

Q2

µ2

)

• Plus distributions: “generalized functions”

(c.f. delta function). µ-dependence: evolution.



• What they are, how they work

∫ 1

0

dx
f(x)

(1 − x)+
≡
∫ 1

0

dx
f(x) − f(1)

(1 − x)

∫ 1

0

dx f(x)

(

ln(1 − x)

1 − x

)

+

≡
∫ 1

0

dx ( f(x) − f(1) )
ln(1 − x)

(1 − x)

and so on . . . where f(x) will be parton distributions

• f(x) term: real gluon, with momentum fraction 1 − x



• f(1) term: virtual, with elastic kinematics

• If f(x) is changing rapidly, find a large correction.



• A Special Distribution

• DGLAP “evolution kernel” = “splitting function”

Pqq(x) = CF
αs

π

[

1 + x2

1 − x

]

+

• Nonsinglet, leading order



• A neat bit of soft-gluon kinematics: pq + pq̄ = q + k ⇒:

z =
Q2

ξ1ξ2S
=

(pq + pq̄ − k)2

(pq + pq̄)2

∼ 1 − 2Q · k
Q2

And in the ~Q = 0 (c.m.) frame,

1 − z =
2k0

Q

So one singularity is from kT = 0, one from k0 = 0, for

any number of soft partons in the final state.

z → 1 is called “partonic threshold”.



• Back to the one-loop DY hard-scattering

dσ̂
(1)
qq̄→γ∗g

dQ2 d2QT
= σ0

αsCF

π2

(

1 − 4Q2
T

(1 − z)2ξ1ξ2S

)−1/2

×
[

1

Q2
T

1 + z2

1 − z
− 2z

(1 − z)Q2

]

• Factorized cross section at fixed QT :

dσNN→µ+µ−+X(Q, p1, p2)

dQ2d2QT
=

∫

ξ1,ξ2

∑

a=qq̄

dσ̂aā→µ+µ−(Q)+X(Q, µ, ξ1p1, ξ2p2,QT )

dQ2d2QT

× fa/N(ξ1, µ) fā/N(ξ2, µ)



Integrate over QT : the NLO total DY cross section

Integrate over QT at fixed z = Q2

ξ1ξ2S. QT → 0 is singular.

Add diagrams with virtual gluons: their kT integrals

are singular.

Factorize low kT = −QT < µ gluons as in DIS.

The remainder is now finite at fixed QT , z 6= 1.



• The QT -integrated NLO partonic cross section

d2σ̂
(1)
qq̄→γ∗g(z,Q2, µ2)

dQ2

= σ0(Q
2)

(

αs(µ)

π

)

{

2(1 + z2)

[

ln(1 − z)

1 − z

]

+

− (1 + z2) ln z

(1 − z)
+

(

π2

3
− 4

)

δ(1 − z)

}

+ σ0(Q
2) CF

αs

π

[

1 + z2

1 − z

]

+

ln

(

Q2

µ2

)

• Plus distributions: “generalized functions” (c.f. delta function).



• What they are, how they work
∫ 1

0

dx
f(x)

(1 − x)+
≡
∫ 1

0

dx
f(x) − f(1)

(1 − x)

∫ 1

0

dx f(x)

(

ln(1 − x)

1 − x

)

+

≡
∫ 1

0

dx ( f(x) − f(1) )
ln(1 − x)

(1 − x)

and so on . . . where f(x) will be parton distributions

• f(x) term: real gluon, with momentum fraction 1 − x.

• f(1) term: virtual, with elastic kinematics.

• If f(x) is changing rapidly, find a large correction.



• A Special Distribution is the

• DGLAP “evolution kernel” = “splitting function”:

Pqq(z) = CF
αs

π

[

1 + z2

1 − z

]

+

→ A(αs)

1 − z
+ . . .

• Nonsinglet, leading order



• A neat bit of soft-gluon kinematics: pq + pq̄ = q + k ⇒

z =
Q2

ξ1ξ2S
=

(pq + pq̄ − k)2

(pq + pq̄)2

z ∼ 1 − 2Q · k
Q2

And in the ~Q = 0 (c.m.) frame,

1 − z =
2k0

Q

So one singularity in σ̂(1) is from kT = 0, one from k0 = 0,

for any number of soft partons in the final state.

z → 1 is called “partonic threshold”.



• Threshold resummation is resummation

for the plus distributions.

• Same method as for QT , but now fix ksoft ∼ 1
2(1 − z)Q.

Laplace or Mellin transform e−N2k0/Q ∼ zN and MS

collinear subtraction gives (here NLL accuracy shown)

exp[Ethr
a (N,Q) ]:

Ethr
a (N,Q) =

∫ Q2

Q2/N2

du2

u2
2Aa (αs(u)) ln

Nu

Q



Threshold: small 1 − z ∼ 2k0/Q, large N : enhancement:

2Ci
αs(Q)

π

∫ Q2

Q2/N2

dk2
T

k2
T

[

{

1 +

(

αs(Q)

π

) (

K − β0

4π

)}

ln

(

Q2

k2
T

)

+2
αs(Q)

π

]

∼ αs ln2(N)(1 + αs ln(N) + . . . )

+αs ln(N)(1 + αs ln(N) + . . . )

+ . . .

• As for QT , these are LL(A(1)), NLL (B(1), A(2)), and so on.



• And again, NLL is good so long as αs(Q) ln N ≤ 1.

In this case, the enhancement is entirely due to the

subtraction of collinear singularities.

The MS distributions decrease faster in N

than the partonic cross section.



• Inverse transform to the cross section:

dσres
NN

dQ2
=
∑

a

σ̂(0)
a (Q,µ)

∫

CN

dN

2πi

(

Q2

S

)−N

exp
[

Ethr
a (N,Q, µ)

]

×fa/N(N,µ) fā/N(N,µ)

Formalism is similar for W, Z, H. “Electroweak annihilation”

Typical collider result . . .



• Logs: threshold resummation vs. fixed order for H at LHC

(from Catani, de Florian, Grazzini, Nason (2003))

• Modest change & decrease in µ-dependence

→ increased confidence. But see Sec. VII.)



IVA. Jet shapes and 1/Q corrections

• Angularity event shapes

(C.F. Berger, Kúcs, GS (2003), Berger, Magnea (2004))

τa =
1

Q

∑

i in N

Ei (sin θi)
a

(1 − | cos θi|)1−a

• θi angle to thrust (a = 0) axis (n̂ that gives τmin
0 ).

• Jet “broadening”: a = 1; total cross section: a → − ∞.



• Cross section is a convolution in contributions of each jet and

a soft radiation function

σ (τa, Q, a) = HIJ

∫

dts
∏

jets i

∫

dti SJI(ts)
∏

i

Ji(ti, pJi)

× δ(
∑

i

ti + ts − τa)

• Thus, general resummed cross section can be

written as an inverse transform

σ (τa, Q, a) =

∫

C

dν eν τa HIJ SJI(ν)
∏

i

Ji(ν, pJi)

in terms of f(ν) =
∫∞

0
dt e−νt f(t) .



• NLL resummed cross section is from an inverse transform:

σ (τa, Q, a) = σtot

∫

C

dν eν τa [ Ji(ν, pJi) ]
2

• At NLL can define Scc̄ = 1: indepenent jet “shower”

evolution. (Catani, Turnock, Trentadue, Webber (1990-92))



So we need the resummed jet function in transform space

Ji(ν, pJi) =

∫

0

dτa e−ντJi Ji(τJi, pJi) = e
1
2E(ν,Q,a)

where the same reasoning as above gives:

E(ν,Q, a) = 2

1
∫

0

du

u

[ uQ2
∫

u2Q2

dp2
T

p2
T

A (αs(pT ))
(

e−u1−aν(pT /Q)a − 1
)

+
1

2
B
(

αs(
√

uQ)
)

(

e−u(ν/2)2/(2−a) − 1
)

]

Again, nonperturbative scales are implied by

resummmed PT. But now, an expansion in powers of 1/Q . . .



Shape function approach for e+e− jets

• pT > κ, PT

• pT < κ, expand exponentials: isolate “shape function”.

• Low pT (< κ ↔ µI) replaced by fNP

E(ν,Q, a) = EPT(ν,Q, κ, a)

+
2

1 − a

∞
∑

n=1

1

nn!

(

− ν

Q

)n
κ2
∫

0

dp2
T

p2
T

pn
T A (αs(pT ))

[

1 −
(

pT

Q

)n(1−a)
]

+ . . .

≡ EPT(ν,Q, κ, a) + ln f̃a,NP

(

ν

Q
, κ

)



Shape function properties

• fNP factorizes under moments → convolution

σ(τa, Q) =
1

2πi

∫

C

dνf̃a,NP

(

ν

Q

)

σPT(ν,Q, a)

=

∫

dξfa,NP(ξ) σ(τa − ξ,Q)

• fNP function of ν/Qonly

• Linear in ν/Q: shift in PT distribution

(Korchemsky & GS (1995), Dokshitzer & Webber (1997))

f̃a,NP

(

ν

Q

)

→ e
ν

“

τa−
1

1−a
λ1
Q

”



• Shape function phenomenology for thrust

(Korchemsky,GS, Belitsky; Gardi Rathsman,Magnea (1998 . . . ))

Strategy: fNP(ǫ) at Z pole; predict other Q (viz. PDFs)



• Scaling property for τa event shapes

• (Approximate rapidity-independence of NP dynamics)

ln f̃a,NP

(

ν

Q
, κ

)

=
1

1 − a

∞
∑

n=1

λn(κ)

(

− ν

Q

)n

f̃a

(

ν

Q
, κ

)

=

[

f̃0

(

ν

Q
, κ

)]
1

1−a

• All a-dependence is in the exponent.



• What PYTHIA gives
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R
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Y
( ν

,a
)/

R
P

T
( ν

,a
)

ν

• Intriguing, but untested as yet.

(L3 data have been analyzed, with encouraging preliminary results.)



IVB. Evolution with Color Exchange

• What distinguishes hadron colliders.

• Multiloop scattering amplitudes in dimensional regularization

(Catani (1998) Tejeda-Yeomans & GS (2002) Kosower (2003)) Aybat, Dixon & GS (2006)

– Amplitude for partonic process

f : fA(pA, rA) + fB(pB, rB) → f1(p1, r1) + f2(p2, r2)

M[f]
{ri}

(

pj,
Q2

µ2
, αs(µ

2), ǫ

)

= M[f]
L

(

pj,
Q2

µ2
, αs(µ

2), ǫ

)

(cL){ri}

• Need to control poles in ǫ for factorized calculations at

fixed order and for resummation. Evol. for “soft” functions SIJ.



• Example: qq̄ tensors (cL){ri}
:

c2 ≡

1 3

2 4

1

2

3

4

c1 ≡

– Jet/soft factorization at amplitude level. (Sen (1983)):

M[f]
L

(

pi,
Q2

µ2
, αs(µ

2), ǫ

)

=
∏

i=A,B,1,2

J
[virt]
i

(

Q2

µ2
, αs(µ

2), ǫ

)

×S
[f]
LI

(

pi,
Q2

µ2
, αs(µ

2), ǫ

)

h
[f]
I

(

℘i,
Q2

µ2
, αs(µ

2)

)



– Soft function labelled by color exchange

(singlet, octet . . . )

– Factors require dimensional regularization

– Same factorization → resummation

– Poles at 2- and higher loops . . .

– Relation to supersymmetric Yang-Mills theories

(Bern, Czakon, Dixon, Kosower & Smirnov (2006) verified

structure to 4 loops.)



– Dimensionally-regularized jets

(Magnea & GS (1990))

Ji

(

Q2

µ2
, αs(µ

2), ǫ

)

= exp

{

1

4

∫ −Q2

0

dξ2

ξ2

[

K[i](αs(µ
2), ǫ)

+G[i]

(

−1, ᾱs

(

µ2

ξ2
, αs(µ

2), ǫ,

)

ǫ

)

+
1

2

∫ µ2

ξ2

dµ̃2

µ̃2
γ

[i]
K

(

ᾱs

(

µ2

µ̃2
, αs(µ

2), ǫ

))

] }

.

Ji

(

Q2

µ2
, αs(µ

2), ǫ

)

= exp

[

∞
∑

n=1

(

αs(µ
2)

π

)n n+1
∑

n=1

E
[i] (n)
m (ε)

εn
+ finite

]

– γK, K related to A above



– Dimensionally-regularized S

S[f]

(

Q2

µ2
, αs(µ

2), ǫ

)

= P exp

[

−1

2

∫ −Q2

0

dµ̃2

µ̃2
Γ[f]

(

ᾱs

(

µ2

µ̃2
, αs(µ

2), ǫ

))

]

Γ[f]: anomalous dimension; color mixing



• New result for all massless 2 → n processes

(Aybat, Dixon, GS (2006))

ΓS =
αs

π

(

1 +
αs

π
K
)

Γ
(1)
S′ + · · ·

Γ(2) = (K/2)Γ(1) with same K as in the DGLAP splitting.

Related to the “CMW” or MC/bremsstrahlung scheme.

(Catani, Marchesini & Webber (1990))



The diagrams with 3g vertices vanish!

To NNLO, “single-web” exchange generalizes single gluon.

(C.F. Berger, 2002)



• The full two-loop single-pole terms × LO are simply





∑

i∈f

E
[i] (2)
1

ε
+

1

4ε
Γ

[f] (2)
S



 × LO

• E
[i] (2)
1 is 2 loop single pole in Sudakov form factor

(Ravindran, Smith, van Neerven (2005))

Agrees with Jantzen, Kuhn, Penin, Smirnov (2005, 2006) in EW logs.

• Hints of unexpected simplicity for IR gluons.

• Increasing insight into the structure of final states.



IVC. Generalizations and limitations

1) Factorization with no hard scattering: BFKL

(Sen (1980) Balitsky (1996) Kúcs (2003))

• Regge limit in PT for elastic scattering: pA + pB → p′A + p′B

−(p′A − p′B)2 − t ≪ s = (PA + pB)2

• Elastic amplitude: M(t, s).

• Special case: A → γ∗(q), large S = (q + pB)2, fixed Q2 = −q2.

This corresponds to x = Q2/(2pB · q) ∼ Q2/S → 0,

which is the small-x limit of DIS by the optical theorem:

σtot
γ∗(q)+p ∝ Im M elastic

γ∗(q)+p



M(t, s) =
∑

m,ℓ

∫

(

m−1
∏

i=1

dD−2ki⊥

)





ℓ−1
∏

j=1

dD−2pj⊥





×Γ
(m) a1... am
A (pA, q,n, k1⊥, . . . , km⊥)

×S
′ (n,ℓ)
a1... an, b1... bell(q, n; k1⊥, . . . , kn⊥; p1⊥, . . . , pm⊥)

×Γ
(ℓ) b1... bm
B (pB, q,n; p1⊥, . . . , pℓ⊥)

• Factorization at fixed rapidity separation:

Jets, ΓA,B & soft, S; no H. Introduce vector nµ as above.



• Evolution equations (in ln s ∼ rapidity ∼ ln(1/x)) give

• generically m convolutions at NmLL

(

pA · n ∂

∂ pA · n − 1

)

Γ
(ℓ) a1... aℓ
A (pA, q,n; k1⊥, . . . , kℓ⊥) =

∑

m

∫ m
∏

j=1

dD−2lj⊥K(ℓ,m)
a1... an; b1... bm

(k1⊥, l1⊥, . . . ; q, n)

×Γ
(m) b1... bm
B (pA, q,n; l1⊥ . . . )

• Can project onto different color exchange:
octet, m = 0 LL reggeized gluon
singlet, m = 1, BFKL LL pomeron ordered in rapidity, not kT . . .



2) Non-global logs: color and energy flow

(Dasgupta & Salam (2001) . . . )

A B

Jet 2

Jet 1Q
 �Q�

Q
1 2

�


• Simplest cases: 2 jets. Measure distribution ΣΩ(E)

• Very interesting case: energy flow between jets

in WW fusion to H.



• Choices for Cross Section:

• a) Inclusive in Ω̄ → Number of jets not fixed!

• b) Correlation with event shape τa . . . :

fixes number of jets → factorization

(Berger, Kúcs, GS (2003), Dokshitzer, Marchesini (2003), Banfi, Salam, Zanderighi (2004,5))



• Contrast: for number of jets not fixed: nonlinear

evolution! The approximate evolution equation for Σ :

(Banfi, Marchesini, Smye (2002)) LL in E/Q, large-Nc) Define: ∂∆ ≡ E (∂/∂E)

∂∆Σab(E) = −∂∆Rab Σab(E) +

∫

k not in Ω

dNab→k (ΣakΣkb − Σab)

dNab→k ≡ dΩk

4π

βa · βb

βk · βb βk · βa
(“dipolesource”)

Rab ≡
∫ Q

E

dE′

E′

∫

Ω

dNab→k , (suppression due to

uncancelled virtual gluons)



• Origin of the nonlinearity

– ∂E can come from unobserved “hard” gluon G(k).

– New hard gluon G(k) acts as new, recoil-less source.

– Large-Nc limit: q̄(a)G(k)q(b) sources → q̄(a)q(k) ⊕ q̄(k)q(a).

– “Global” event shapes don’t allow an extra hard gluon.

(observed everywhere), but fixing an event shape

may limit the number of events.

– We are far from a full understanding.



3) Large threshold effects in observed hadrons

• Pions at fixed target and RHIC (Vogelsang and de Florian, 2004)

p3
T dσ(xT )

dpT
=

∑

a,b,c

∫ 1

0

dx1 fa/H1

(

x1, µ
2
F

)

∫ 1

0

dx2 fb/H2

(

x2, µ
2
F

)

×
∫ 1

0

dz z2 Dh/c

(

z, µ2
F

)

×
∫ 1

0

dx̂T δ

(

x̂T − xT

z
√

x1x2

)
∫ η̂+

η̂−

dη̂
x̂4

T ŝ

2

dσ̂ab→cX(x̂2
T , η̂)

dx̂2
Tdη̂

η̂: pseudorapidity at parton level

η̂+ = −η̂− = ln

[

(1 +
√

1 − x̂2
T )/x̂T

]



• Averages for distribution x and fragmentation z’s

<z>

<x>-jet

RHIC 200 GeV midrapidity average z for pions, and average x for pions,
photons, jets at (NLO). Thanks to Werner Vogelsang.

• Large z enhances threshold singularities.



• Singularities at one loop:

ŝ dσ̂
(1)
ab→cX(v, w)

dv dw
≈ ŝ dˆ̃σ

(0)
ab→cd(v)

dv

[

A′ δ(1 − w) + B′

(

ln(1 − w)

1 − w

)

+

+C ′

(

1

1 − w

)

+

]

• For resummation, take x2N
T moments → factorization:

σ̂
(res)
ab→cd(N) = Cab→cd ∆a

N ∆b
N ∆c

N Jd
N

[

∑

I

GI
ab→cd ∆

(int)ab→cd
I N

]

σ̂
(Born)
ab→cd(N)

• A typical NLL resummed factor:

∆a
N = exp

[

∫ 1

0

zN−1 − 1

1 − z

∫ (1−z)2Q2

µ2
FI

dq2

q2
Aa(αs(q

2))

]

A = CF (αs/π)(1 + K(αs/π) ) + . . .



• Invert the moments: resolve a long-standing fixed-target
vs. collider puzzle.

pT(GeV)

pp → π0+X      E∗ d3σ/dp3 (nb/GeV2)

ζ=1

ζ=1/2
ζ=2

NLO NLL

MRST2002   KKP
E706 √s=31.5 GeV | η | < 0.75
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Resummed

pT

Kn

√s = 31.5 GeV
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pT(GeV)

pp → π0+X         pT∗ dσ/dpT (nb∗ GeV2)pp → π0+X         p3

RHIC √s=200 GeV

NLO
Expansion
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• Left: expansion of resummed cross section to fixed orders.

• Right: exact NLO vs. NLO expansion.

• Shows in π0 1PI cross sections threshold resummation is
more accurate and more important in fixed target range.



Conclusions/Summary

• Time’s up for a sample of a large subject.

• Resummation is absolutely necessary for many distributions

(QT , event shape) just one step away from inclusive cross

sections, because most events are found in regions with

ordered scales (QT ≪ Q, mjet ≪ Ejet).

• It is a useful tool to approach precision in

certain collider cross sections (DY, σtot
tt̄ ).

• It can serve to suggest the form of NP effects.



• Resummations can be derived from factorizations.

• Many puzzles remain, esp. connected to energy flow

for non-global cross sections.

• Among the many topics not covered:

– Other approaches to resummation, based on parton
showers effective theories . . . [generally similar results]

– Threshold resummation for QCD hard scattering
– Joint resummation of QT and threshold effects
– Resummation for electroweak scattering
– Resummation of heavy-quark logarithms

– Much more on small-x resummations, high density QCD

(HERA, RHIC).



• Resummation just scratches the surface of QCD.

But it makes a mark.


